
Tutorial on fitting multiple proteins into a cryoEM of

their assembly using MultiFit
Keren Lasker, Ben Webb and Andrej Sali

Goal
In this tutorial we will use MultiFit (Lasker et al, JMB, 2009) to determine the

protein configuration of the ARP2/3 complex from its individual protein models

guided by a density map of the entire complex.

Input
The input to MultiFit consists of a density map of an

assembly, and atomic models of the individual

subunits. A density map of the ARP2/3 complex was

simulated to 2nm from an ARP2/3 crystal structure

(PDB access code 1TYQ) using the pdb2mrc

command in EMAN. Structures of the 7 proteins

(ARP2,ARP3,ARC1-ARC5) were obtained from the

PDB. All of the relevant input file are found in

$MultiFit_tutorial/data. The tutorial steps are

summarized in $MultiFit_tutorial/tutorial_main.sh

Step 1: Generate an assembly input data file
To make use of various automation scripts needed for the next steps, we build an

assembly input file. The assembly input file can be generated automatically using

the build_assembly_input_file.py script.

The input file consists of a subunits part and an assembly part.

Each line in the subunits part consists of data about one of the subunits:

Field name Description Example

name An id for the subunit ARP2

protein Path to the corresponding pdb file data/models/ ARP2.pdb

pdb_anchor_points Path to the corresponding anchor points file

(generated by gmm_pdb)

results/ARP2.gmm.pdb

num_gaussians The number of 3G Gaussian components used

to describe the subunit

8

transformations path to a file containing results for fitting the

subunit into the density map (generated by

gmm_fitting)

results/ARP2.fitting.output

ref filename Optional parameter: Path to a file containing

the native structure of the component. The

structure should be positioned as found in the

assembly for model RMSD calculations. If no

reference structure is provided, leave the field

empty.

data/models/

ARP2.fitted.pdb

The assembly part consists of a single line consisting of the following data:

Field name Description Example

map path to the assembly density map in MRC format data/1tyq_20.mrc

resolution The resolution of the density map 20.

spacing A/pixel 3.

x-origin X coordinate origin of the density map 0

y-origin Y coordinate origin of the density map 0

z-origin Z coordinate origin of the density map 0

coarse_anchor_points path to the corresponding pdb anchor points file

(generated by gmm_em). This file would contain a

detailed GMM, which would be used for protein fitting.

results/ 1tyq.fine.gmm.pdb

fine_anchor_points path to the corresponding pdb anchor points file

(generated by gmm_em). This file would contain a

corases GMM, with one Gaussian per

protein/component. This file would be used in the

results/1tyq.coarse. gmm.pdb

multiple fitting procedure.

The assembly input file for ARP2/3

Step 2: Learn a reduced representation of the entire

assembly and the individual subunits

Learn a Gaussian Mixture Model of the density map

To determine the reduced representation of an assembly density map into X 3D

Gaussians, simply run:

/opt/multifit/bin/gmm_em density.mrc X dens_threshold density.X.gmm.pdb

The function will determine a Gaussian Mixture Model of X components that best

explain the configuration of all voxels with density value above dens_threshold.

The default output of the function is a set of the Gaussians centers encoded as

CA atoms. In some cases the function fails to read the a/pix and origin from the

mrc file. It is advised to provide them as input parameters as follows:

--apix arg the a/pix of the density map

--x arg the X origin of the density map

--y arg the Y origin of the density map

name|protein| pdb_anchor_points| transformations|ref filename|
A|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_A.pdb|1tyq_A_anchor_points.pdb|8|1tyq_A_fitting.output|$MULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_A.fitted.pdb|
B|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_B.pdb|1tyq_B_anchor_points.pdb|5|1tyq_B_fitting.output|$MULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_B.fitted.pdb|
C|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_C.pdb|1tyq_C_anchor_points.pdb|7|1tyq_C_fitting.output|$MULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_C.fitted.pdb|
D|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_D.pdb|1tyq_D_anchor_points.pdb|6|1tyq_D_fitting.output|$MULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_D.fitted.pdb|
E|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_E.pdb|1tyq_E_anchor_points.pdb|4|1tyq_E_fitting.output|$MULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_E.fitted.pdb|
F|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_F.pdb|1tyq_F_anchor_points.pdb|4|1tyq_F_fitting.output|$MULTIFIT/benchmarks/em_proteomics/data/1
tyq/1tyq_F.fitted.pdb|
G|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_G.pdb|1tyq_G_anchor_points.pdb|3|1tyq_G_fitting.output|$MULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_G.fitted.pdb|
map| resolution| spacing| x-origin| y-origin| z-origin|fine_pdb_anchor_points|coarse_pdb_anchor_points|
$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_20.mrc| 20.0| 3.| 0.| 0.| 0.|1tyq_20.fine.gmm.pdb|1tyq_20.coarse.gmm.pdb

--z arg the Z origin of the density map

The function can provide others types of outputs, such as a .mrc file for each

segment. To learn more read the help documentation of the function.

For example, to segment the assembly into densities corresponding to its 7

proteins, simply run:

/opt/multifit/bin/gmm_em data/1tyq_20.mrc 7 700 1tyq.dens.7.proteins.pdb –seg

1tyq.dens.protein

Learn a Gaussian Mixture Model of an atomic

component
To determine a reduced representation of a protein

into X 3D Gaussians, simply run:

/opt/multifit/bin/gmm_pdb prot.pdb X gmm_results.pdb

The function will learn a Gaussian Mixture Model of X components that best

describe the configuration of the protein atoms. The function uses all atoms as

default but can work on backbone atoms alone by indicating the –backbone flag.

For example, we can produce a reduced representation of ARP3, consisting of 8

Gaussians by running:

/opt/multifit/bin/gmm_pdb data/models/1tyq_A.pdb X 1tyq_A.gmm.pdb

How to decide the number of Gaussians (K) for each protein?
Deciding on the number of Gaussians used to describe a protein is something of

an art. Some rules of thumb:

1. Require at least 3, as we need three points for the fitting.

2. Have each Gaussian “covering” the same amount of residues. If you

choose, for example, 50 residues per Gaussians, a protein of 170

residues should have 3 Gaussians and one with 260 residues should have

5 Gaussians.

Map segmented into
anchor graph

Discretize
map

3. The number of Gaussians of the assembly should be equal to the sum of

the Gaussians of all of the individual proteins.

4. Advanced: Plot the resulting likelihood function of the GMM clustering

procedure for different values of K and searching for a point of large drop

of the curve.

5. To estimate the number of Gaussians for each protein, run the script:

/opt/multifit/utils/anchor_point_estimator.py assembly.input num_of_residues

Automation
To run gmm_pdb and gmm_em on all relevant subunits, you can run the script:

/opt/multifit/utils/run_anchor_points_detection.py assembly.input

density_threshold

Step 3: Fit each protein to the map
We now use the spatial configuration of the calculated GMMs to efficiently fit

proteins in the density.

To fit each protein to the density, run the script:

/opt/multifit/utils/run_protein_fitting.py assembly.input multifit.par

multifit.par – sets values for parameters needed for the fitting procedure

(Supplementary materials).

The script calls anchor_point_fitting on each of the proteins:

/opt/multifit/bin/anchor_point_fitting

 Usage: anchor_point_fitting <density.mrc> <a/pix>

 <resolution> <protein> <density_anchor_points.pdb>

 <protein_anchor_points.pdb>

--x arg the X origin of the density map

 --y arg the Y origin of the density map

 --z arg the Z origin of the density map

 --local-rad arg Preform fitting around the centter of the input

 molecule with a given radius (it is recommended to set

 the radius to be at least the value of the resolution)

 --ref arg a PDB file of the protein fitted to the density map

 (used for benchmarking)

 --sol arg all solutions will be printed as PDB format and will be

 named <sol>_i.pdb

 --output-file arg output filename

 --param-file arg parameters used by anchor_point_fitting

If the reference structure is known and the method is used for benchmarking, use

/opt/multifit/utils/ fetch_best_sampled_transformations.py

The results for our fitting procedure are:

Step 4: Infer the optimum solution

Calculate scores

Next, we calculate all relevant scores. As this is the most time consuming step,

we will not run it and just use the scores that are in the scores directory. For

completeness, in order to generate all scoring data, run:

/opt/multifit/utils/run_all_scores.py assembly.input

Enumerate configurations

Finally, we efficiently enumerate all possible configurations to find the best

scoring assembly models.

/opt/multifit/utils/run_multifit.py assembly.input assembly.jt

results/configurations.output

In case you have the native structure and would like to assess RMSD to native,

use: for: data/models/1tyq_A.pdb best fit of index 0 with rmsd 5.91062
for: data/models/1tyq_B.pdb best fit of index 11 with rmsd 3.09233
for: data/models/1tyq_C.pdb best fit of index 14 with rmsd 7.9537
for: data/models/1tyq_D.pdb best fit of index 1 with rmsd 7.8815
for: data/models/1tyq_E.pdb best fit of index 5 with rmsd 3.88972
for: data/models/1tyq_F.pdb best fit of index 3 with rmsd 5.61873
for: data/models/1tyq_G.pdb best fit of index 8 with rmsd 11.0771

/opt/multifit/utils/run_multifit.py assembly.input assembly.jt

results/configurations.output data/models/1tyq.fitted.pdb

The configuration.output file contains the final models. For example a result can

be:

|configuration index|score|rmsd to ref|configuration file|

|A:17,B:5,C:18,D:8,E:1,F:0,G:0|16.8515000343|10.1418685913|conf.0.pdb|

Step 5: Reranking by proteomics data
For challenging molecules, a score composed of fitting and geometric

complementarity is not sufficient for an unambiguous determination of the

assembly architecture and additional restraints should be provided. Here, we

demonstrate how proteomics data can be converted into spatial restraints.

For illustrate we chose two models, sampled by MultiFit, both ranked similarly

and show how additional restraint derived from proteomics data can resolve the

ambiguity.

/opt/multifit/utils/rescoring_by_proteomics.py ARP23.wrong.model.xml

restraints.xml

/opt/multifit/utils/rescoring_by_proteomics.py ARP23.good.model.xml

restraints.xml

Supplementary materials

Advanced Parameters

Advanced parameters can be tuned in multifit.par file.

Tuning parameters for Anchor point detection
Parameter name Default

value

Description

NUM_RESIDUES_FOR_ANCHOR_POINT 50 We should have at least 5 anchor points for each

protein. If the number of residues of the protein is

lower than 250, adjust this parameter accordingly.

MAX_EXC_VOL 2.0 Maximum excluded volume allowed

NUM_FITTING_SOLS 20 number of fitting solutions to consider for each

protein

FRACTION_MIN_CENTER_DIST 0.66 The distance between the proteins centroids

should be at least 2/3 of their radii sum

FRACTION_MAX_CENTER_DIST 1.33 The distance between the proteins centroids

should be at most 4/3 of their radii sum

PROTEIN_1_CENTROID the centroid of the second protein should be close

to this point

PROTEIN_2_CENTROID the centroid of the first protein should be close to

this point

DISTANCE_FROM_CENTROID 5.0 only consider transformation that center the

protein within this value from the provided

centroids

Tuning parameters for fitting by point alignment

Parameter name Default
value

Description

CUBE_SIZE 3.

QUERY_RADIUS 20.

MAX_RMSD_IN_ALIGN 15 only consider matching for which the alignment rmsd is

below this value

MAX_ANGLE_DIFF 0.1 Maximum rotational difference between solutions in the

same cluster

MIN_CLUSTER_SIZE 3 Clusters with less members are not considers as

candidates for good fits

MAX_TRANS_DIFF 5. Maximum translational difference between solutions in

the same cluster

MultiFit in a nutshell

Motivation

Models of macromolecular assemblies are essential for a mechanistic description

of cellular processes. Such models are increasingly obtained by fitting atomic-

resolution structures of components into a density map of the whole assembly.

Yet, current density-fitting techniques are frequently insufficient for an

unambiguous determination of the positions and orientations of all components.

The algorithm

MultiFit is a computational method for simultaneously fitting atomic structures of

components into their assembly density map at resolutions as low as 25 Å. The

component positions and orientations are optimized with respect to a scoring

function that includes the quality-of-fit of components in the map, the protrusion

of components from the map envelope, as well as the shape complementarity

between pairs of components. The scoring function is optimized by an exact

inference optimizer DOMINO that efficiently finds the global minimum in a

discrete sampling space.

We express this structure characterization challenge as a combinatorial

optimization problem. Next, we outline a representation of the modeled system, a

scoring function, and an optimization algorithm.

Representation. The assembly density map is represented by a three-

dimensional (3D) grid, in which every voxel is assigned an estimated density

value. The components are represented by their atoms and remain rigid

throughout the entire optimization process.

Scoring. Potential configurations are evaluated based on the quality-of-fit of

individual components in the density map, the protrusion of each component

from the map envelope, as well as the shape complementarity between pairs of

components.

Optimization. The component configuration that optimizes the scoring function is

identified by a combinatorial optimization protocol, consisting of three stages: (i)

anchor graph construction, (ii) coarse-grained sampling, and (iii) fine-grained

sampling. In anchor graph construction, the density map is discretized into

regions and the connectivity between them is calculated. In coarse-grained

sampling, the sampling space is first discretized by fitting each of the

components into each of the map regions and selecting a number of top-ranking

placements for each component in each region. Next, a branch-and-bound

search through all mappings of components to regions combined with DOMINO

(a divide and conquer sampler based on message passing algorithm on graphs

finds top 20 scoring configurations. In fine-grained sampling, each of these top

configurations is refined by DOMINO; a refined sampling space is generated for

each coarse configuration by docking pairs of its interacting components and

selecting only those placements that are approximately consistent with the initial

coarse configuration.

Iterate over all mappings of components to anchor nodes
via branch-and-bound

“Decoupled” subsets of
components.

Sample subsets “independently”.

Scoring function as a graph.
Component fits in vicinity of

their anchor nodes.

Decompose set
of components

Input: components, map

Output: component
configuration, to be

refined.

Gather subset
solutions into best
global solutions

Map segmented into
anchor graph

Discretize
map

