Tutorial on fitting multiple proteins into a cryoEM of

their assembly using MultiFit
Keren Lasker, Ben Webb and Andrej Sali

Goal

In this tutorial we will use MultiFit (Lasker et al, JMB, 2009) to determine the
protein configuration of the ARP2/3 complex from its individual protein models
guided by a density map of the entire complex. g
2\ 25 'L’ ‘\\ %
2

L% :(“

e @

Input y

The input to MultiFit consists of a density map of an

assembly, and atomic models of the individual
subunits. A density map of the ARP2/3 complex was

simulated to 2nm from an ARP2/3 crystal structure l
(PDB access code 1TYQ) using the pdb2mrc
command in EMAN. Structures of the 7 proteins
(ARP2,ARP3,ARC1-ARC5) were obtained from the
PDB. All of the relevant input file are found in

$MultiFit_tutorial/data. The tutorial steps are

summarized in $MultiFit_tutorial/tutorial_main.sh

Step 1: Generate an assembly input data file

To make use of various automation scripts needed for the next steps, we build an
assembly input file. The assembly input file can be generated automatically using
the build_assembly_input_file.py script.

The input file consists of a subunits part and an assembly part.

Each line in the subunits part consists of data about one of the subunits:

Field name Description Example

name An id for the subunit ARP2

protein Path to the corresponding pdb file data/models/ ARP2.pdb

pdb_anchor_points |Path to the corresponding anchor points file results/ARP2.gmm.pdb
(generated by gmm_pdb)

num_gaussians The number of 3G Gaussian components used 8

to describe the subunit

transformations path to a file containing results for fitting the [results/ARP2 fitting.output
subunit into the density map (generated by
gmm_fitting)

ref filename Optional parameter: Path to a file containing [data/models/
the native structure of the component. The ARP?2 fitted.pdb

structure should be positioned as found in the
assembly for model RMSD calculations. If no
reference structure is provided, leave the field

empty.

The assembly part consists of a single line consisting of the following data:

(generated by gmm_em). This file would contain a
detailed GMM, which would be used for protein fitting.

Field name Description Example

map path to the assembly density map in MRC format data/1tyq_20.mrc
resolution The resolution of the density map 20.

spacing Alpixel 3.

X-origin X coordinate origin of the density map 0

y-origin Y coordinate origin of the density map 0

Z-origin Z coordinate origin of the density map 0

coarse_anchor_points path to the corresponding pdb anchor points file results/ 1tyq.fine.gmm.pdb

fine_anchor_points

path to the corresponding pdb anchor points file
(generated by gmm_em). This file would contain a
corases GMM, with one Gaussian per
protein/component. This file would be used in the

results/1tyq.coarse. gmm.pdb

multiple fitting procedure.

name|protein| pdb_anchor_points| transformations|ref filename|
A|SMULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_A.pdb|1tyq_A_anchor_points.pdb|8|1tyq_A_fitting.output|SMULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_A fitted.pdb|
B|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_B.pdb|1tyq_B_anchor_points.pdb|5|1tyq_B_fitting.output{$MULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_B fitted.pdb|
C|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_C.pdb|1tyq_C_anchor_points.pdb|7|1tyq_C_fitting.output|SMULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_C.fitted.pdb|
D|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_D.pdb|1tyq_D_anchor_points.pdb|6]1tyq_D_fitting.output{SMULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_D.fitted.pdb|
E|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_E.pdb|1tyq_E_anchor_points.pdb|4|1tyq_E_fitting.output{$MULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_E fitted.pdb|

FISMULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_F.pdb|1tyq_F_anchor_points.pdbl|4|1tyq_F _fitting.output|$MULTIFIT/benchmarks/em_proteomics/data/1
tyq/1tyq_F fitted.pdb|
G|$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_G.pdb|1tyq_G_anchor_points.pdb|3|1tyq_G_fitting.output|SMULTIFIT/benchmarks/em_proteomics/data/
1tyq/1tyq_G fitted.pdb|

map| resolution| spacing| x-origin| y-origin| z-origin|fine_pdb_anchor_points|coarse_pdb_anchor_points|
$MULTIFIT/benchmarks/em_proteomics/data/1tyq/1tyq_20.mrc| 20.0] 3.] 0.] 0.] 0.|1tyq_20.fine.gmm.pdb|1tyq_20.coarse.gmm.pdb

The assembly input file for ARP2/3

Step 2: Learn a reduced representation of the entire

assembly and the individual subunits

Learn a Gaussian Mixture Model of the density map
To determine the reduced representation of an assembly density map into X 3D
Gaussians, simply run:

/opt/multifit/bin/gmm_em density.mrc X dens_threshold density.X.gmm.pdb

The function will determine a Gaussian Mixture Model of X components that best
explain the configuration of all voxels with density value above dens_threshold.
The default output of the function is a set of the Gaussians centers encoded as
CA atoms. In some cases the function fails to read the a/pix and origin from the
mrc file. It is advised to provide them as input parameters as follows:

--apix arg the a/pix of the density map

--x arg the X origin of the density map

--y arg the Y origin of the density map

--z arg the Z origin of the density map

The function can provide others types of outputs, such as a .mrc file for each
segment. To learn more read the help documentation of the function.

For example, to segment the assembly into densities corresponding to its 7
proteins, simply run:

/opt/multifit/bin/gmm_em data/1tyq_20.mrc 7 700 1tyq.dens.7.proteins.pdb —seg

1tyq.dens.protein
Learn a Gaussian Mixture Model of an atomic \ e {r
component A

To determine a reduced representation of a protein

into X 3D Gaussians, simply run:

/opt/multifit/bin/gmm_pdb prot.pdb X gmm_results.pdb

The function will learn a Gaussian Mixture Model of X components that best
describe the configuration of the protein atoms. The function uses all atoms as
default but can work on backbone atoms alone by indicating the —backbone flag.
For example, we can produce a reduced representation of ARP3, consisting of 8
Gaussians by running:

/opt/multifit/bin/gmm_pdb data/models/1tyq_A.pdb X 1tyq_A.gmm.pdb

How to decide the number of Gaussians (K) for each protein?

Deciding on the number of Gaussians used to describe a protein is something of
an art. Some rules of thumb:

1. Require at least 3, as we need three points for the fitting.

2. Have each Gaussian “covering” the same amount of residues. If you
choose, for example, 50 residues per Gaussians, a protein of 170
residues should have 3 Gaussians and one with 260 residues should have
5 Gaussians.

3. The number of Gaussians of the assembly should be equal to the sum of
the Gaussians of all of the individual proteins.

4. Advanced: Plot the resulting likelihood function of the GMM clustering
procedure for different values of K and searching for a point of large drop
of the curve.

5. To estimate the number of Gaussians for each protein, run the script:
/opt/multifit/utils/anchor_point_estimator.py assembly.input num_of_residues

Automation

To run gmm_pdb and gmm_em on all relevant subunits, you can run the script:

/opt/multifit/utils/run_anchor_points_detection.py assembly.input
density_threshold

Step 3: Fit each protein to the map

We now use the spatial configuration of the calculated GMMs to efficiently fit
proteins in the density.
To fit each protein to the density, run the script:
Jopt/multifit/utils/run_protein_fitting.py assembly.input multifit.par
multifit.par — sets values for parameters needed for the fitting procedure
(Supplementary materials).
The script calls anchor_point_fitting on each of the proteins:
lopt/muiltifit/bin/anchor_point_fitting
Usage: anchor_point_fitting <density.mrc> <a/pix>
<resolution> <protein> <density _anchor_points.pdb>

<protein_anchor_points.pdb>

--x arg the X origin of the density map
--y arg the Y origin of the density map
--z arg the Z origin of the density map

--local-rad arg Preform fitting around the centter of the input

molecule with a given radius (it is recommended to set

the radius to be at least the value of the resolution)

--ref arg a PDB file of the protein fitted to the density map
(used for benchmarking)

--sol arg all solutions will be printed as PDB format and will be
named <sol>_i.pdb

--output-file arg output filename

--param-file arg ~ parameters used by anchor_point_fitting

If the reference structure is known and the method is used for benchmarking, use
lopt/multifit/utils/ fetch_best_sampled_transformations.py

The results for our fitting procedure are:

Step 4: Infer the optimum solution

Calculate scores

Next, we calculate all relevant scores. As this is the most time consuming step,
we will not run it and just use the scores that are in the scores directory. For
completeness, in order to generate all scoring data, run:

Jopt/multifit/utils/run_all_scores.py assembly.input

Enumerate configurations

Finally, we efficiently enumerate all possible configurations to find the best
scoring assembly models.

Jopt/multifit/utils/run_muiltifit.py assembly.input assembly.jt
results/configurations.output

In case you have the native structure and would like to assess RMSD to native,

for: data/models/1tyq_A.pdb best fit ofindex 0 with rmsd 5.91062 use:
for: data/models/1tyq_B.pdb best fit of index 11 with rmsd 3.09233
for: data/models/1tyq_C.pdb best fit of index 14 with rmsd 7.9537
for: data/models/1tyq_D.pdb best fit of index 1 with rmsd 7.8815
for: data/models/1tyq_E.pdb best fit of index 5 with rmsd 3.88972
for: data/models/1tyq_F.pdb best fit of index 3 with rmsd 5.61873
for: data/models/1tyq_G.pdb best fit of index 8 with rmsd 11.0771

lopt/multifit/utils/run_multifit.py assembly.input assembly.jt
results/configurations.output data/models/1tyq.fitted.pdb

The configuration.output file contains the final models. For example a result can
be:

|configuration index|score|rmsd to ref|configuration file|
|A:17,B:5,C:18,D:8,E:1,F:0,G:0]|16.8515000343|10.1418685913|conf.0.pdb|

Step 5: Reranking by proteomics data

For challenging molecules, a score composed of fitting and geometric
complementarity is not sufficient for an unambiguous determination of the
assembly architecture and additional restraints should be provided. Here, we
demonstrate how proteomics data can be converted into spatial restraints.

For illustrate we chose two models, sampled by MultiFit, both ranked similarly
and show how additional restraint derived from proteomics data can resolve the
ambiguity.

/opt/multifit/utils/rescoring_by_proteomics.py ARP23.wrong.model.xml
restraints.xml

/opt/multifit/utils/rescoring_by_proteomics.py ARP23.good.model.xml

restraints.xml

Supplementary materials

Advanced Parameters

Advanced parameters can be tuned in multifit.par file.

Tuning parameters for Anchor point detection

Parameter name Default Description

\value

NUM_RESIDUES FOR_ANCHOR_POINT|50 We should have at least 5 anchor points for each
protein. If the number of residues of the protein is

lower than 250, adjust this parameter accordingly.

MAX_EXC VOL 2.0 Maximum excluded volume allowed

NUM_FITTING_SOLS 20 number of fitting solutions to consider for each
protein

FRACTION_MIN_CENTER_DIST 0.66 The distance between the proteins centroids
should be at least 2/3 of their radii sum

FRACTION_MAX_CENTER_DIST 1.33 The distance between the proteins centroids
should be at most 4/3 of their radii sum

PROTEIN_1_CENTROID the centroid of the second protein should be close
to this point

PROTEIN_2 CENTROID the centroid of the first protein should be close to
this point

DISTANCE_FROM_CENTROID 5.0 only consider transformation that center the
protein within this value from the provided
centroids

Tuning parameters for fitting by point alignment

Parameter name Default Description
value

CUBE_SIZE 3.

QUERY_RADIUS 20.

MAX_RMSD_IN_ALIGN 15 only consider matching for which the alignment rmsd is
below this value

MAX_ANGLE_DIFF 0.1 Maximum rotational difference between solutions in the
same cluster

MIN_CLUSTER_SIZE 3 Clusters with less members are not considers as
candidates for good fits

MAX_TRANS_ DIFF 5. Maximum translational difference between solutions in

the same cluster

MultiFit in a nutshell

Motivation

Models of macromolecular assemblies are essential for a mechanistic description
of cellular processes. Such models are increasingly obtained by fitting atomic-
resolution structures of components into a density map of the whole assembly.
Yet, current density-fitting techniques are frequently insufficient for an

unambiguous determination of the positions and orientations of all components.

The algorithm

MultiFit is a computational method for simultaneously fitting atomic structures of
components into their assembly density map at resolutions as low as 25 A. The
component positions and orientations are optimized with respect to a scoring
function that includes the quality-of-fit of components in the map, the protrusion
of components from the map envelope, as well as the shape complementarity
between pairs of components. The scoring function is optimized by an exact
inference optimizer DOMINO that efficiently finds the global minimum in a
discrete sampling space.

We express this structure characterization challenge as a combinatorial
optimization problem. Next, we outline a representation of the modeled system, a
scoring function, and an optimization algorithm.

Representation. The assembly density map is represented by a three-
dimensional (3D) grid, in which every voxel is assigned an estimated density
value. The components are represented by their atoms and remain rigid
throughout the entire optimization process.

Scoring. Potential configurations are evaluated based on the quality-of-fit of
individual components in the density map, the protrusion of each component
from the map envelope, as well as the shape complementarity between pairs of
components.

Optimization. The component configuration that optimizes the scoring function is
identified by a combinatorial optimization protocol, consisting of three stages: (i)
anchor graph construction, (ii) coarse-grained sampling, and (iii) fine-grained

sampling. In anchor graph construction, the density map is discretized into
regions and the connectivity between them is calculated. In coarse-grained
sampling, the sampling space is first discretized by fitting each of the
components into each of the map regions and selecting a number of top-ranking
placements for each component in each region. Next, a branch-and-bound
search through all mappings of components to regions combined with DOMINO
(a divide and conquer sampler based on message passing algorithm on graphs
finds top 20 scoring configurations. In fine-grained sampling, each of these top
configurations is refined by DOMINO; a refined sampling space is generated for
each coarse configuration by docking pairs of its interacting components and
selecting only those placements that are approximately consistent with the initial

coarse configuration.

Map segmented into
Input: components, map anchor graph
Discretize

R N - , map \
s, B8 } (";‘1:,"’ \/_ / ? S

Iterate over all mappings of components to anchor nodes
via branch-and-bound

Gather subset E
solutions into best Decompose set D
global solutions of components

I %
Output: component

configuration, to be “Decoupled” subsets of Scoring function as a graph.
refined. components. Component fits in vicinity of
Sample subsets “independently”. their anchor nodes.

